

# *NAMIBIA UNIVERSITY*

## OF SCIENCE AND TECHNOLOGY

## **FACULTY OF HEALTH AND APPLIED SCIENCES**

#### **DEPARTMENT OF MATHEMATICS AND STATISTICS**

| QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics |                               |  |
|--------------------------------------------------------------------------|-------------------------------|--|
| QUALIFICATION CODE: 07BAMS LEVEL: 5                                      |                               |  |
| COURSE CODE: LIA502S                                                     | COURSE NAME: LINEAR ALGEBRA 1 |  |
| SESSION: January 2019                                                    | PAPER: THEORY                 |  |
| DURATION: 3 Hours                                                        | MARKS: 100                    |  |

| SECOND OPPORTUNITY EXAMINATION QUESTION PAPER |                  |  |
|-----------------------------------------------|------------------|--|
| EXAMINER                                      | MR. B.E OBABUEKI |  |
| MODERATOR:                                    | DR. O. SHUUNGULA |  |

| INSTRUCTIONS |                                                                      |  |
|--------------|----------------------------------------------------------------------|--|
| 1.           | Answer ALL the questions in the booklet provided.                    |  |
| 2.           | Show clearly all the steps used in the calculations.                 |  |
| 3.           | All written work must be done in blue or black ink and sketches must |  |
|              | be done in pencil.                                                   |  |

## **PERMISSIBLE MATERIALS**

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Excluding this front page)

#### Question 1 (15 marks)

Consider the following vectors in  $R^3$ :

$$x = 2i - 3j + k$$
,  $y = i - 2j + 3k$ ,  $z = j + 2k$ 

- 1.1 Determine the dot product  $x \cdot z$  (2)
- 1.2 Find the cross product  $y \times z$  (4)
- 1.3 Calculate the angle between x and y (6)
- 1.4 If the vectors x, y and t make a triangle as shown below, what is vector t? (3)



## Question 2 (17 marks)

Consider the following matrices:

$$A = \begin{pmatrix} 1 & 5 & -1 \\ 0 & 3 & -2 \\ 1 & 4 & -3 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 3 \end{pmatrix}, C = \begin{pmatrix} 2 & 2 & 1 & -3 \\ 0 & 3 & 0 & -4 \\ 0 & 3 & 0 & -5 \\ 1 & 2 & 3 & -6 \end{pmatrix}$$

- 2.1 Determine the matrix BA. (3)
- 2.2 Given that f(x) = 5x 2, find f(A). (4)
- 2.3 Obtain the determinant of matrix C. (10)

#### Question 3 (21 marks)

3.1 Use row operations to solve the following system of linear equations:

$$3x-4y+z+2t = 0$$

$$-2x+y-3z-t = 0$$

$$4x-7y-z+3t = 0$$

$$x-3y-2z+t = 0$$

Use 
$$z = 1$$
,  $t = 2$  for your backward substitution. (13)

3.2 Use Cramer's rule to determine the value of b in the following system of linear equations:

$$a+b+c=2$$
  
 $2a-b+7c=0$   
 $3a+b-2c-5$  (8)

## Question 4 (22 marks)

- 4.1 Let U and W be two subspaces of the vector space V over the field F. Prove that  $U \cap W$  is a subspace of V. (11)
- 4.2 Let  $x = (x_1, x_2, x_3)$  and  $y = (y_1, y_2, y_3)$  be in  $R^3$  and let a be a real numbers. Show that a(x+y) = ax + ay (11)

## Question 5 (25 marks)

- 5.1 Use the definition to investigate whether the subset  $S = \{(2,-1,3), (-2,3,1), (1,1,2)\}$  of  $\mathbb{R}^3$  is linearly dependent or linearly independent. (17)
- 5.2 Does the set  $S = \{(2,0), (-1,2)\}$  span  $R^2$ ? (8)

END OF PAPER TOTAL: 100 MARKS